RAS PhysiologyНейрохимия Neurochemical Journal

  • ISSN (Print) 1027-8133
  • ISSN (Online) 3034-5561

Expression of Farnesylated EGFP in Primary Neocortex Culture Neurons Results in Impairs Dendritic Spike Development

PII
S30345561S1027813325010127-1
DOI
10.7868/S3034556125010127
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 42 / Issue number 1
Pages
149-157
Abstract
Genetically encoded fluorescent proteins are widely used in biological research in general and in neurobiology in particular. When using these tools, it is important that the expression of the fluorescent protein does not disrupt the natural physiological processes in the cell. Addition of the farnesylation motif to fluorescent proteins leads to their anchoring in the plasma membrane, which is often used to visualize fine details of cell morphology, such as dendritic spines. In our work, we investigated the development of spines in primary cultured neocortical neurons by transfecting cells with farnesylated and unmodified EGFP by electroporation in suspension on the day of planting. It was found that neurons expressing farnesylated EGFP demonstrate pronounced disturbances in spine development, in particular, these cells were characterized by longer spines with more filopodia-like structures, which is typical for various pathological conditions. Therefore, when using farnesylated fluorescent proteins in experiments, it is necessary to take into account their possible negative impact on the development of various membrane structures of the cell, in particular neuronal spines.
Keywords
EGFP трансфекция фарнезилирование нейрон шипик культура нейронов
Date of publication
04.12.2024
Year of publication
2024
Number of purchasers
0
Views
280

References

  1. 1. Day R.N., Davidson M.W. // Chem. Soc. Rev. 2009. V. 38. P. 2887-2921.
  2. 2. Cranfill P.J., Sell B.R., Baird M.A., Allen J.R., Lavagnino Z., de Gruiter H.M., Kremers G.-J., Davidson M.W., Ustione A., Piston D.W. // Nat. Methods. 2016. V. 13. P. 557-562.
  3. 3. Cormack B.P., Valdivia R.H., Falkow S. // Gene. 1996. V. 173. P. 33-38.
  4. 4. Kostyuk A.I., Demidovich A.D., Kotova D.A., Belousov V. V, Bilan D.S. // Int. J. Mol. Sci. 2019. V. 20. P. 4200.
  5. 5. Craven S.E., El-Husseini A.E., Bredt D.S. // Neuron. 1999. V. 22. P. 497-509.
  6. 6. Grabrucker A.M., Vaida B., Bockmann J., Boeckers T.M. // J. Neurosci. Methods. 2009. V. 181. P. 227-234.
  7. 7. Cane M., Maco B., Knott G., Holtmaat A. // J. Neurosci. 2014. V. 34. P. 2075-2086.
  8. 8. Lim S.T., Antonucci D.E., Scannevin R.H., Trimmer J.S. // Neuron. 2000. V. 25. P. 385-397.
  9. 9. Kitamura A., Nakayama Y., Kinjo M. // Biochem. Biophys. Res.Commun. 2015. V. 463. P. 401-406.
  10. 10. Lu J., Wu T., Zhang B., Liu S., Song W., Qiao J., Ruan H. // Cell Commun. Signal. 2021. V. 19. P. 60.
  11. 11. Амая М., Айзенхабер Б., Айзенхабер Ф., ван Хук М.Л. // Молекулярная биология. 2013. Т. 47. С. 717-730.
  12. 12. Kim A.K., Wu H.D., Inoue T. // Sci. Rep. England, 2021. V. 11. P. 16421.
  13. 13. Watts S.D., Suchland K.L., Amara S.G., Ingram S.L. // PLoS One. 2012. V. 7 P. e35373-e35373.
  14. 14. Rodgers W. // Biotechniques. 2002. V. 32 P. 1044-1051.
  15. 15. Keiser M.S., Chen Y.H., Davidson B.L. // Curr. Protoc. Mouse Biol. 2018. V. 8. e57
  16. 16. Yuste R. Dendritic Spines. The MIT Press, 2010.
  17. 17. Son J., Snng S., Lee S., Chang S., Kim M. // J. Microsc. 2011. V. 241. P. 261-272.
  18. 18. Hayashi Y., Majewska A.K. // Neuron. 2005. V. 46. P. 529-532.
  19. 19. Bourne J., Harris K.M. // Curr. Opin. Neurobiol. 2007. V. 17. P. 381-386.
  20. 20. Fiala J.C., Feinberg M., Popov V., Harris K.M. // J. Neurosci. 1998. V. 18. P. 8900-8911.
  21. 21. Wisniewski K.E., Segan S.M., Miezejeski C.M., Sersen E.A., Rudelli R.D.// Am. J. Med. Genet. 1991. V. 38. P. 476-480.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library